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Clos Networks

• 2010s: modern data center networking 
architectures to achieve high performance 
and resiliency. [Liu et al. NSDI’13, 
Akella et al. ICDCN’15, Jyothi et al. SOSR’15, 
Valadarsky et al. Hotnets’15 etc.]

• Used in layer-2 data center protocol 
Transparent Interconnect of Lots of Links (TRILL). 
FabricPath (Cisco), QFabricSystem (Juniper), VCS Fabric (Brocade).
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• Clos[1953]:  Interconnection networks with small number of links to 
route simultaneous connection requests such as telephone calls.

• 1990s: Ethernet connectivity. 



Practical Motivation: Clos Networks

• Clos networks –
design of interconnection networks with 
small number of links to route simultaneous 
connection requests such as telephone calls.
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Practical Motivation: Clos Networks

• Clos networks –
design of interconnection networks with 
small number of links to route simultaneous 
connection requests such as telephone calls.

• Rearrangeably nonblocking in the multirate
setting: multiple paths for the call to be 
switched through the network so that calls 
will always be connected and not "blocked" 
by another call.

• Minimize number of crossbars in the middle 
stage.
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Weighted Bipartite Edge Coloring

• Given: An edge-weighted bipartite 
multi-graph 𝐺:= (𝑉, 𝐸)with 
edge-weights 𝑤: 𝐸 → 0,1 .

• 𝐺𝑜𝑎𝑙: Find a proper weighted 
coloring with minimum number of 
colors.

• Proper weighted coloring:
Sum of the edges incident to any 
vertex of any color is ≤ 1.
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• Given: An edge-weighted bipartite 
multi-graph 𝐺:= (𝑉, 𝐸)with 
edge-weights 𝑤: 𝐸 → 0,1 .

• 𝐺𝑜𝑎𝑙: Find a proper weighted 
coloring with minimum number of 
colors.

• Proper weighted coloring:
Sum of the edges incident to any 
vertex of any color is ≤ 1.



Edge Coloring Meets        Bin Packing

For Theory CS People



Bipartite Edge Coloring

• A special case of WBEC when all edge 
weights are one.

• Chromatic Index 𝜒′ 𝐺 :min # of
colors required for a proper edge
coloring.

• Konig’s Theorem:
For bipartite graphs 𝜒′ 𝐺 = Δ.   
where Δ is maximum degree.
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Bin Packing Problem:
• Given : 𝑛 items with  sizes 𝑠1, 𝑠2 …𝑠𝑛, s.t. 𝑠𝑖 ∈ (0,1]

• Goal: Pack all items into min # of unit bins.

• Example: items {0.8, 0.6, 0.3, 0.2, 0.1} can be 
packed in 2 unit bins: {0.8, 0.2} and {0.6, 0.3, 0.1}.

• NP Hardness from Partition

• Approx: 𝑂𝑃𝑇 + log𝑂𝑃𝑇 [Hoberg-Rothvoss ‘15]

• Special case of WBEC: 𝑉1 = 𝑉2 = 1

(Edges = items, colors = bins).

• Many other generalizations: See my thesis!
Geometric Bin Packing [Bansal-K. ,SODA’14], 
Vector Packing [Bansal-Elias-K. ,SODA’16] etc.12/16/2015 11
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Weighted Bipartite Edge Coloring: Previous Works

• Conjecture 1. [Chung & Ross1991] 
There is a proper weighted coloring with 2𝑚 -1 colors where 
𝑚 = max

𝑣∈𝑉
{min# 𝑏𝑖𝑛𝑠 𝑡𝑜 𝑝𝑎𝑐𝑘 𝑤𝑒

′𝑠 | 𝑒 ∈ 𝛿(𝑣)}.

Lower bound:

• Ngo -Vu SODA’03 : 1.25 𝑚

Upper bound:

• Du et al SIAM J. Comp. ‘98: 41𝑚/16 = 2.562 𝑚

• Correa-Goemans STOC ‘04: 2.548 𝑚

• Feige-Singh ESA ‘08: 9𝑚/4 = 2.25 𝑚
12

𝑚 × 0.4

𝑚/2 × 1

𝑚 × 0.6



This talk:

• Theorem 1: Polynomial time algorithm for proper edge coloring with 
20

9
𝑚

colors.

• Purely combinatorial algorithm. (Coloring – Konig’s theorem)

• Intricate analysis using configuration linear program. (Bin Packing)

• Theorem 2: Polynomial time algorithm for proper edge coloring with 
11

5
𝑚 colors when all edge weights are >

1

4
. 

• 𝑚 = max
𝑣∈𝑉
{min# 𝑏𝑖𝑛𝑠 𝑡𝑜 𝑝𝑎𝑐𝑘 𝑤𝑒

′𝑠 | 𝑒 ∈ 𝛿(𝑣)}



Algorithm:

• 1. Start with an empty set.
𝐹 ← ∅.
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• 1. Include edges  with weight >
1

10
in 𝐹 in non-increasing order of 
weight s.t. deg𝐹 𝑣 ≤ 𝑡𝑚 ∀ 𝑣 ∈ 𝑉.
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weight s.t. deg𝐹 𝑣 ≤ 𝑡𝑚 ∀ 𝑣 ∈ 𝑉.

• 2. Decompose 𝐹 into 𝑟 = 𝑡𝑚
matchings and color them using 𝑟
colors [Konig’s Thorem].



Algorithm:

• 1. Include edges  with weight >
1

10
in 𝐹 in non-increasing order of 
weight s.t. deg𝐹 𝑣 ≤ 𝑡𝑚 ∀ 𝑣 ∈ 𝑉.

• 2. Decompose 𝐹 into 𝑟 = 𝑡𝑚
matchings and color them using 𝑟
colors [Konig’s Thorem].

• 3. Greedily add remaining edges in 
non-increasing order of weight 
maintaining that the weighted 
degree of each color at each vertex 
is at most one [First Fit].
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Proof of correctness: t = 20/9 is enough!

• Assume there is an edge 𝑒: = 𝑢, 𝑣
with weight we = 𝛼 that can not be 
added.

• Either 𝑢 or 𝑣 has degree ≥ 𝑡𝑚.

• Tight bin at 𝑣: weight > 1 − 𝛼.

• Assume 𝑑𝑒𝑔 𝑢 ≥ 𝑡𝑚 and 𝛽𝑚 bins are 
tight on 𝑣.

𝑢 𝑒 𝑣



Analysis: t> 20/9

• Edges incident at 𝑢 or 𝑣 can not be packed into 𝑚
bins.

• More involved analysis using two Bin Packing 
Configuration LP and Dual LP.

• Number of bins ≥ Opt soln of Configuration LP 
Relaxation ≥ Dual Optimum ≥ Dual Feasible Solution 
>m



Analysis: t> 20/9 at vertex u

• There can be many item sizes. We discretize!

• Classify edges incident at 𝑢 into three classes:

• LARGE: (1/2,1],  MEDIUM: (1/3,1/2], SMALL: (1/4, 1/3].

• Tight Bins: Bins with weight > 1 − 𝛼.

• Lemma: All tight bins in our algorithm will have at most 
one item from 𝐿 ∪ M.



Analysis: t> 20/9, at vertex u 

• Possible Configurations of Tight Bins in ALGO:
(L)            (L,S)           (M,S)       (M,S,S)       (S,S,S)

• (L,M),(M,M),(M,M,S) does not appear in ALGO.

• Configurations in OPT packing are the following (or 
subsets of the following) :

• (L,M), (L, S), (M,M,S), (M, S, S), (S, S, S).

• Using valid configurations in OPT we need to cover 
all items in L, M, S.



Configuration LP
• Possible Configurations of Tight 

Bins in ALGO:
𝑥1 bins: (L),
𝑥2 bins: (L,S),
𝑥3 bins:  (M,S), 
𝑥4 bins: (M,S,S), 
𝑥5 bins: (S,S,S).

• Say, in OPT solution, there are
𝑦1 bins: (L,M),
𝑦2 bins: (L,S),
y3 bins:  (M,M,S),
𝑦4 bins: (M,S,S), 
𝑦5 bins: (S,S,S).

12/16/2015 22



Analysis:

• For side v, more intricate analysis as there can be edges < 𝛼 !

• Dual optima for u ∶ Du >
2𝑡𝑚

3
−
𝛽𝑚

3
.

• Dual optima for v: Dv >
9𝛽𝑚

13
.

• If 𝑡 > 20/9 then either Du or Dv 𝑖𝑠 > 𝑚.

• Giving us the desired contradiction.



Open Questions!

1. Resolving Chung-Ross conjecture.
• Improve existential upper bound (20/9) or lower bound (5/4).

2. Better Approximation.

3. Online setting:
• Present upper bound 5𝑛 (Correa-Goemans), 
• Lower bound 3𝑛 − 2 (Tsai, Wang, Hwang).



Questions!
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Extra Slides

• Online Setting, General Graphs, Knapsack version.

• Profit is arbitrary and total weight/bins is n and we aim to get 1/2n of 
the total profit.
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Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min { 

𝐶

𝑥𝐶: 

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Objective:  min # configurations(bins)

Constraint:  

For each item, at least one configuration 

containing the item should be selected.
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Configuration LP

• ℂ: set of configurations(possible way of feasibly packing a bin).

Primal:

min { 

𝐶

𝑥𝐶: 

𝐶∋𝑖

𝑥𝐶 ≥ 1 𝑖 ∈ 𝐼 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Gilmore Gomory LP for multiple identical items: 

Min {1𝑇𝑥: 𝐴𝑥 ≥ 𝑏, 𝑥𝐶≥ 0(𝐶 ∈ ℂ)}

Columns:  Feasible configurations

Rows:        Items (or types of items)
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Configuration LP
Gilmore Gomory LP: 

Min {1𝑇𝑥: 𝐴𝑥 ≥ 𝑏, 𝑥𝐶≥ 0(𝐶 ∈ ℂ)}
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Configuration LP
Gilmore Gomory LP: 

Min {1𝑇𝑥: 𝐴𝑥 ≥ 𝑏, 𝑥𝐶≥ 0(𝐶 ∈ ℂ)}
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Proof of correctness: t = 20/9 is enough!

• Assume there is an edge 𝑒: = (𝑢, 𝑣)with 
weight we = 𝛼 that can not be added.

• Step 1: Include edges in 𝐹 in non-dec order of 
weight s.t. deg𝐹 𝑣 ≤ 𝑡𝑚 ∀ 𝑣 ∈ 𝑉. 

• As 𝑒 was not added in step 1, one of its 
endpoints have degree 𝑡𝑚 .

• Step 3: Greedily add remaining edges into 
maintaining that the weighted degree of each 
color at each vertex is at most one.

• As  𝑒 was not added in step 4, ∀ color class C
either 𝑤𝑒𝑖𝑔ℎ𝑡𝐶(𝑢) > 1 − 𝛼 or 
𝑤𝑒𝑖𝑔ℎ𝑡𝐶 𝑣 > 1 − 𝛼.

𝑢 𝑒 𝑣

Tight bin: weight > 1 − 𝛼.
Assume 𝑑𝑒𝑔 𝑢 ≥ 𝑡𝑚 and 
𝛽𝑚 bins are tight on 𝑣.



Proof of correctness: 𝑡 = 20/9 𝑖𝑠 𝑒𝑛𝑜𝑢𝑔ℎ!

• 𝛼 < 1/3
• Each bin can contain at most two edges with 

weight >1/3. 

• As all edges incident to a vertex can be packed 
into 𝑚 bins, there can be at most 2𝑚 edges 
incident to a vertex with weight > 1/3. 

• As we chose 𝑡 > 2, 𝛼 < 1/3.

• 𝑚 > 𝛽𝑚(1 − 𝛼) [From 𝑣]

⇒ 1 > 𝛽(1 − 𝛼)

• 𝑚 > (𝑡𝑚 − 𝛽𝑚)(1 − 𝛼)+ 𝛽𝑚𝛼 [From 𝑢]
⇒ 1 > 𝑡(1 − 𝛼) + 𝛽(2𝛼 − 1)

𝑢 𝑒 𝑣

Tight bin: weight > 1 − 𝛼.
Assume 𝑑𝑒𝑔 𝑢 ≥ 𝑡𝑚 and 
𝛽𝑚 bins are tight on 𝑣.
Each bin at 𝑢 has weight > 𝛼



Analysis: t> 20/9

• Case A: 𝛼 ≤
1

4
.

• 𝑡 1 − 𝛼 + 𝛽 2𝛼 − 1 ≥ 1 → Contradiction!

• Case B: 
1

4
< 𝛼 ≤

1

3
.

• Edges incident at 𝑢 or 𝑣 can not be packed into 𝑚 bins.

• More involved analysis using Bin Packing Configuration LP and 
Dual LP.

• Number of bins ≥ Opt soln of Configuration LP Relaxation ≥
Dual Optimum ≥ Dual Feasible Solution >m



Analysis: t> 20/9 and 
1

4
< 𝜇 ≤

1

3
, at vertex u

• Classify edges incident at 𝑢 into three classes:

• LARGE: (1/2,1],  MEDIUM: (1/3,1/2], SMALL: (1/4, 1/3].

• Observation: Each configuration (feasible way of 
packing a bin) will have ≤ 1 items from 𝐿, ≤ 2 items 
from 𝐿 ∪ M and ≤ 3 items from 𝐿 ∪ M ∪ 𝑆.

• Tight Bins: Bins with weight > 1 − 𝛼.

• Open Bins: Bins with weight ∈ (0, 1 − 𝛼]

• Lemma: All tight bins in our algorithm will have at most 
one item from 𝐿 ∪ M.



Analysis: t> 20/9 and 
1

4
< 𝜇 ≤

1

3
, at vertex u 

• Possible Configurations of Tight Bins in ALGO:
(L)            (L,S)           (M,S)       (M,S,S)       (S,S,S)

• (L,M),(M,M),(M,M,S) does not appear in ALGO.

• Configurations in OPT packing are the following (or 
subsets of the following) :

• (L,M), (L, S), (M,M,S), (M, S, S), (S, S, S).



Analysis: t> 20/9 and 
1

4
< 𝜇 ≤

1

3
, at vertex u

• Possible Configurations of Tight Bins in ALGO:
𝑥1 bins: (L), 𝑥2 bins: (L,S), 𝑥3 bins:  (M,S), 𝑥4 bins: (M,S,S), 𝑥5 bins: (S,S,S).

• Let 𝑧1, 𝑧2, 𝑧3 be the number of items of type L, M, S in open bins.

• 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑔ℎ𝑡 𝑏𝑖𝑛𝑠 = 𝜏 ≥ (𝑡𝑚 − 𝛽𝑚).

• Using valid configurations in OPT we need to cover all items in L,M, S.

• Say, in OPT solution, there are 𝑦1 bins: (L,M), 𝑦2 bins: (L,S), y3 bins:  (M,M,S),
𝑦4 bins: (M,S,S), 𝑦5 bins: (S,S,S).

• Number of items in L,M,S comes as a function of 𝑥𝑖 ‘s.

• e.g., For L items: 𝑦1 + 𝑦2 ≥ 𝑥1 + 𝑥2 + 𝑧1
• This gives us the following LP.



Configuration LP

• Possible Configurations of Tight 
Bins in ALGO: 𝑥1 bins: (L), 𝑥2 bins: 
(L,S), 𝑥3 bins:  (M,S), 𝑥4 bins: 
(M,S,S), 𝑥5 bins: (S,S,S).

• Let 𝑧1, 𝑧2, 𝑧3 be the number of 
items of type L, M, S in open colors.

• Say, in OPT solution, there are 𝑦1
bins: (L,M), 𝑦2 bins: (L,S), y3 bins:  
(M,M,S), 𝑦4 bins: (M,S,S), 𝑦5 bins: 
(S,S,S).
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Configuration LP
• ℂ: set of configurations in OPT, 

• T: types of items  (𝐿,𝑀, 𝑆).

Primal:

min { 

𝐶

𝑥𝐶: 

𝐶∋𝑖

𝑥𝐶 ≥ 𝑛𝑖 𝑖 ∈ 𝑇 , 𝑥𝐶 ≥ 0 (𝐶 ∈ ℂ) }

Dual:

max { 

𝑖∈𝐼

𝑛𝑖𝑣𝑖: 

𝑖∈C

𝑣𝑖 ≤ 1 𝐶 ∈ ℂ , 𝑣𝑖 ≥ 0 𝑖 ∈ 𝑇 }
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Analysis:

• For side v, more intricate analysis as there can be edges < 𝛼 !

• Dual optima for u ∶ Du >
2𝑡𝑚

3
−
𝛽𝑚

3
.

• Dual optima for v: Dv >
9𝛽𝑚

13
.

• If 𝑡 > 20/9 then either Du or Dv 𝑖𝑠 > 𝑚.

• Giving us the desired contradiction.


