On Weighted Bipartite Edge Coloring

Arindam Khan
(Georgia Tech \rightarrow IDSIA Lugano, Switzerland)

Joint work with Mohit Singh (Microsoft Research Redmond)

Clos Networks

- Clos[1953]: Interconnection networks with small number of links to route simultaneous connection requests such as telephone calls.
- 1990s: Ethernet connectivity.
- 2010s: modern data center networking architectures to achieve high performance and resiliency. [Liu et al. NSDI'13, Akella et al. ICDCN'15, Jyothi et al. SOSR'15, Valadarsky et al. Hotnets'15 etc.]
- Used in layer-2 data center protocol Transparent Interconnect of Lots of Links (TRILL). FabricPath (Cisco), QFabricSystem (Juniper), VCS Fabric (Brocade).

Practical Motivation: Clos Networks

- Clos networks design of interconnection networks with small number of links to route simultaneous connection requests such as telephone calls.

Practical Motivation: Clos Networks

- Clos networks design of interconnection networks with small number of links to route simultaneous connection requests such as telephone calls.

Practical Motivation: Clos Networks

- Clos networks design of interconnection networks with small number of links to route simultaneous connection requests such as telephone calls.
- Rearrangeably nonblocking in the multirate setting: multiple paths for the call to be switched through the network so that calls will always be connected and not "blocked" by another call.
- Minimize number of crossbars in the middle
 stage.

Weighted Bipartite Edge Coloring

- Given: An edge-weighted bipartite multi-graph $G:=(V, E)$ with edge-weights $w: E \rightarrow[0,1]$.
- Goal: Find a proper weighted coloring with minimum number of colors.
- Proper weighted coloring: Sum of the edges incident to any vertex of any color is ≤ 1.

$$
------\infty 0.5
$$

Weighted Bipartite Edge Coloring

- Given: An edge-weighted bipartite multi-graph $G:=(V, E)$ with edge-weights $w: E \rightarrow[0,1]$.
- Goal: Find a proper weighted coloring with minimum number of colors.
- Proper weighted coloring: Sum of the edges incident to any vertex of any color is ≤ 1.

$$
---\sim---0.5
$$

For Theory CS People

Edge Coloring
 Meets
 Bin Packing

Bipartite Edge Coloring

- A special case of WBEC when all edge weights are one.
- Chromatic Index $\chi^{\prime}(G)$: min \# of colors required for a proper edge coloring.
- Konig's Theorem:

For bipartite graphs $\chi^{\prime}(G)=\Delta$.
 where Δ is maximum degree.

Bipartite Edge Coloring

- A special case of WBEC when all edge weights are one.
- Chromatic Index $\chi^{\prime}(G)$: min \# of colors required for a proper edge coloring.
- Konig's Theorem:

For bipartite graphs $\chi^{\prime}(G)=\Delta$.
 where Δ is maximum degree.

Bin Packing Problem:

- Given : n items with sizes $s_{1}, s_{2} \ldots s_{n}$, s.t. $s_{i} \in(0,1]$
- Goal: Pack all items into min \# of unit bins.
- Example: items $\{0.8,0.6,0.3,0.2,0.1\}$ can be packed in 2 unit bins: $\{0.8,0.2\}$ and $\{0.6,0.3,0.1\}$.
- NP Hardness from Partition

- Approx: OPT + log OPT [Hoberg-Rothvoss '15]
- Special case of WBEC: $\left|V_{1}\right|=\left|V_{2}\right|=1$
(Edges = items, colors = bins).
- Many other generalizations: See my thesis! Geometric Bin Packing [Bansal-K. ,SODA'14],

Weighted Bipartite Edge Coloring: Previous Works

- Conjecture 1. [Chung \& Ross1991]

There is a proper weighted coloring with $2 m-1$ colors where $m=\max _{\{v \in V\}}\left\{\min \#\right.$ bins to pack $\left.w_{e}^{\prime} s \mid e \in \delta(v)\right\}$.

- Du et al SIAM J. Comp. '98: $41 \mathrm{~m} / 16=2.562 \mathrm{~m}$
- Correa-Goemans STOC '04: 2.548 m
- Feige-Singh ESA '08: $9 m / 4=2.25 m$

This talk:

- $m=\max _{\{v \in V\}}\left\{\min \#\right.$ bins to pack $\left.w_{e}^{\prime} s \mid e \in \delta(v)\right\}$
- Theorem 1: Polynomial time algorithm for proper edge coloring with $\frac{20}{9} m$ colors.
- Purely combinatorial algorithm. (Coloring - Konig's theorem)
- Intricate analysis using configuration linear program. (Bin Packing)
- Theorem 2: Polynomial time algorithm for proper edge coloring with $\frac{11}{5} m$ colors when all edge weights are $>\frac{1}{4}$.

Algorithm:

-1. Start with an empty set.

$$
F \leftarrow \emptyset .
$$

Algorithm:

- 1. Include edges with weight $>\frac{1}{10}$ in F in non-increasing order of weight s.t. $\operatorname{deg}_{F} v \leq\lceil t m\rceil \forall v \in V$.

Algorithm:

- 1. Include edges with weight $>\frac{1}{10}$ in F in non-increasing order of weight s.t. $\operatorname{deg}_{F} v \leq\lceil t m\rceil \forall v \in V$.
- 2. Decompose F into $r=\lceil\mathrm{tm}\rceil$ matchings and color them using r colors [Konig's Thorem].

Algorithm:

-1. Include edges with weight $>\frac{1}{10}$ in F in non-increasing order of weight s.t. $\operatorname{deg}_{F} v \leq\lceil t m\rceil \forall v \in V$.

- 2. Decompose F into $r=\lceil\mathrm{tm}\rceil$ matchings and color them using r colors [Konig's Thorem].
-3. Greedily add remaining edges in non-increasing order of weight maintaining that the weighted degree of each color at each vertex
 is at most one [First Fit].

Proof of correctness: $\mathrm{t}=20 / 9$ is enough!

- Assume there is an edge $e:=(u, v)$ with weight $\mathrm{w}_{\mathrm{e}}=\alpha$ that can not be added.
- Either u or v has degree $\geq t m$.
- Tight bin at v : weight $>1-\alpha$.
- Assume $\operatorname{deg}(u) \geq t m$ and βm bins are tight on v.

Analysis: t> 20/9

- Edges incident at u or v can not be packed into m bins.
- More involved analysis using two Bin Packing Configuration LP and Dual LP.
- Number of bins \geq Opt soln of Configuration LP Relaxation \geq Dual Optimum \geq Dual Feasible Solution > m

Analysis: t> 20/9 at vertex u

- There can be many item sizes. We discretize!
- Classify edges incident at u into three classes:
- LARGE: (1/2,1], MEDIUM: (1/3,1/2], SMALL: (1/4, 1/3].
- Tight Bins: Bins with weight $>1-\alpha$.
- Lemma: All tight bins in our algorithm will have at most one item from $L \cup \mathrm{M}$.

Analysis: t> 20/9, at vertex u

- Possible Configurations of Tight Bins in ALGO:

- (L,M),(M,M),(M,M,S) does not appear in ALGO.
- Configurations in OPT packing are the following (or subsets of the following) :
- (L,M), (L, S), (M,M,S), (M, S, S), (S, S, S).
- Using valid configurations in OPT we need to cover all items in $\mathrm{L}, \mathrm{M}, \mathrm{S}$.

Configuration LP

- Possible Configurations of Tight Bins in ALGO:
x_{1} bins: (L),
x_{2} bins: (L,S),
x_{3} bins: (M, S),
x_{4} bins: $(\mathrm{M}, \mathrm{S}, \mathrm{S})$,
x_{5} bins: ($\mathrm{S}, \mathrm{S}, \mathrm{S}$).
- Say, in OPT solution, there are
y_{1} bins: (L,M),
y_{2} bins: (L,S),
y_{3} bins: (M, M, S),
y_{4} bins: $(\mathrm{M}, \mathrm{S}, \mathrm{S})$,
y_{5} bins: (S, S, S).

Analysis:

- For side v , more intricate analysis as there can be edges $<\alpha$!
- Dual optima for $\mathrm{u}: \mathrm{D}_{\mathrm{u}}>\frac{2 t m}{3}-\frac{\beta m}{3}$.
- Dual optima for $\mathrm{v}: \mathrm{D}_{\mathrm{v}}>\frac{9 \beta m}{13}$.
- If $t>20 / 9$ then either D_{u} or D_{v} is $>m$.
- Giving us the desired contradiction.

Open Questions!

1. Resolving Chung-Ross conjecture.

- Improve existential upper bound (20/9) or lower bound (5/4).

2. Better Approximation.
3. Online setting:

- Present upper bound $5 n$ (Correa-Goemans),
- Lower bound $3 n-2$ (Tsai, Wang, Hwang).

Questions!

Extra Slides

- Online Setting, General Graphs, Knapsack version.
- Profit is arbitrary and total weight/bins is n and we aim to get $1 / 2 n$ of the total profit.

Configuration LP

- C: set of configurations(possible way of feasibly packing a bin).

Objective: min \# configurations(bins)
Constraint:

AAAA

0.66

BBB

For each item, at least one configuration containing the item should be selected.

Configuration LP

- C: set of configurations(possible way of feasibly packing a bin).

Gilmore Gomory LP for multiple identical items:
$\operatorname{Min}\left\{1^{T} x: A x \geq b, x_{C} \geq 0(C \in \mathbb{C})\right\}$

0.66

AAAA

Columns: Feasible configurations
Rows: Items (or types of items)

Configuration LP

Gilmore Gomory LP:
$\operatorname{Min}\left\{1^{T} x: A x \geq b, x_{C} \geq 0(C \in \mathbb{C})\right\}$

Configuration LP

Gilmore Gomory LP:
$\operatorname{Min}\left\{1^{T} x: A x \geq b, x_{C} \geq 0(C \in \mathbb{C})\right\}$

Proof of correctness: $\mathrm{t}=20 / 9$ is enough!

- Assume there is an edge $e:=(u, v)$ with weight $\mathrm{w}_{\mathrm{e}}=\alpha$ that can not be added.
- Step 1: Include edges in F in non-dec order of weight s.t. $\operatorname{deg}_{F} v \leq\lceil t m\rceil \forall v \in V$.
- As e was not added in step 1, one of its endpoints have degree $\lceil t m\rceil$.
- Step 3: Greedily add remaining edges into maintaining that the weighted degree of each color at each vertex is at most one.
- As e was not added in step $4, \forall$ color class C either weight $C_{C}(u)>1-\alpha$ or weight $_{C}(v)>1-\alpha$.

Tight bin: weight $>1-\alpha$. Assume $\operatorname{deg}(u) \geq t m$ and βm bins are tight on v.

Proof of correctness: $t=20 / 9$ is enough

- $\alpha<1 / 3$
- Each bin can contain at most two edges with weight $>1 / 3$.
- As all edges incident to a vertex can be packed into m bins, there can be at most $2 m$ edges incident to a vertex with weight $>1 / 3$.

- As we chose $t>2, \alpha<1 / 3$.
- $m>\beta m(1-\alpha)[$ From $v]$

$$
\Rightarrow 1>\beta(1-\alpha)
$$

- $m>(t m-\beta m)(1-\alpha)+\beta m \alpha[$ From $u]$

$$
\Rightarrow 1>t(1-\alpha)+\beta(2 \alpha-1)
$$

Tight bin: weight $>1-\alpha$. Assume $\operatorname{deg}(u) \geq t m$ and βm bins are tight on v. Each bin at u has weight $>\alpha$

Analysis: t> 20/9

- Case A: $\alpha \leq \frac{1}{4}$.
- $t(1-\alpha)+\beta(2 \alpha-1) \geq 1 \rightarrow$ Contradiction!
- Case B: $\frac{1}{4}<\alpha \leq \frac{1}{3}$.
- Edges incident at u or v can not be packed into m bins.
- More involved analysis using Bin Packing Configuration LP and Dual LP.
- Number of bins \geq Opt soln of Configuration LP Relaxation \geq Dual Optimum \geq Dual Feasible Solution $>m$

Analysis: t> 20/9 and $\frac{1}{4}<\mu \leq \frac{1}{3}$, at vertex u

- Classify edges incident at u into three classes:
- LARGE: (1/2,1], MEDIUM: (1/3,1/2], SMALL: (1/4, 1/3].
- Observation: Each configuration (feasible way of packing a bin) will have ≤ 1 items from $L, \leq 2$ items from $L \cup \mathrm{M}$ and ≤ 3 items from $L \cup \mathrm{M} \cup S$.
- Tight Bins: Bins with weight $>1-\alpha$.
- Open Bins: Bins with weight $\in(0,1-\alpha]$
- Lemma: All tight bins in our algorithm will have at most one item from $L \cup \mathrm{M}$.

Analysis: t>20/9 and $\frac{1}{4}<\mu \leq \frac{1}{3}$, at vertex u

- Possible Configurations of Tight Bins in ALGO:

- (L,M), (M,M),(M,M,S) does not appear in ALGO.
- Configurations in OPT packing are the following (or subsets of the following) :
-(L,M), (L, S), (M,M,S), (M, S, S), (S, S, S).

Analysis: t> 20/9 and $\frac{1}{4}<\mu \leq \frac{1}{3}$, at vertex u

- Possible Configurations of Tight Bins in ALGO:
x_{1} bins: (L), x_{2} bins: (L,S), x_{3} bins: (M,S), x_{4} bins: ($\mathrm{M}, \mathrm{S}, \mathrm{S}$), x_{5} bins: $(\mathrm{S}, \mathrm{S}, \mathrm{S})$.
- Let z_{1}, z_{2}, z_{3} be the number of items of type $\mathrm{L}, \mathrm{M}, \mathrm{S}$ in open bins.
- $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=$ Number of tight bins $=\tau \geq(t m-\beta m)$.
- Using valid configurations in OPT we need to cover all items in L, M, S.
- Say, in OPT solution, there are y_{1} bins: $(\mathrm{L}, \mathrm{M}), y_{2}$ bins: $(\mathrm{L}, \mathrm{S}), \mathrm{y}_{3}$ bins: $(\mathrm{M}, \mathrm{M}, \mathrm{S})$, y_{4} bins: ($\mathrm{M}, \mathrm{S}, \mathrm{S}$), y_{5} bins: $(\mathrm{S}, \mathrm{S}, \mathrm{S})$.
- Number of items in L,M,S comes as a function of x_{i} 's.
- e.g., For Litems: $y_{1}+y_{2} \geq x_{1}+x_{2}+z_{1}$
- This gives us the following LP.

Configuration LP

- Possible Configurations of Tight Bins in ALGO: x_{1} bins: (L), x_{2} bins: $(\mathrm{L}, \mathrm{S}), x_{3}$ bins: (M, S), x_{4} bins: ($\mathrm{M}, \mathrm{S}, \mathrm{S}$), x_{5} bins: (S,S,S).
- Let z_{1}, z_{2}, z_{3} be the number of items of type $\mathrm{L}, \mathrm{M}, \mathrm{S}$ in open colors.
- Say, in OPT solution, there are y_{1} bins: (L,M), y_{2} bins: (L,S), y_{3} bins: ($\mathrm{M}, \mathrm{M}, \mathrm{S}$), y_{4} bins: ($\mathrm{M}, \mathrm{S}, \mathrm{S}$), y_{5} bins: (S,S,S).

$$
\begin{aligned}
\min \sum_{i=1}^{5} y_{i} & \\
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & \geq \tau \\
y_{1}+y_{2} & \geq x_{1}+x_{2}+z_{1} \\
y_{1}+2 y_{3}+y_{4} & \geq x_{3}+x_{4}+z_{2} \\
y_{2}+y_{3}+2 y_{4}+3 y_{5} & \geq x_{2}+x_{3}+2 x_{4}+3 x_{5}+z_{3} \\
z_{1}+z_{2}+z_{3} & \geq \theta
\end{aligned}
$$

Configuration LP

- C: set of configurations in OPT,
- T: types of items (L, M, S).

Primal:

$$
\min \left\{\sum_{C} x_{C}: \sum_{C \ni i} x_{C} \geq n_{i}(i \in T), x_{C} \geq 0(C \in \mathbb{C})\right\}
$$

Dual:
$\max \left\{\sum_{i \in I} n_{i} v_{i}: \sum_{i \in \mathrm{C}} v_{i} \leq 1(C \in \mathbb{C}), v_{i} \geq 0(i \in T)\right\}$

Analysis:

- For side v , more intricate analysis as there can be edges $<\alpha$!
- Dual optima for $\mathrm{u}: \mathrm{D}_{\mathrm{u}}>\frac{2 t m}{3}-\frac{\beta m}{3}$.
- Dual optima for $\mathrm{v}: \mathrm{D}_{\mathrm{v}}>\frac{9 \beta m}{13}$.
- If $t>20 / 9$ then either D_{u} or D_{v} is $>m$.
- Giving us the desired contradiction.

